Structure and solvation forces in confined films: Linear and branched alkanes
نویسندگان
چکیده
Equilibrium structures, solvation forces, and conformational dynamics of thin confined films of n-hexadecane and squalane are investigated using a new grand canonical ensemble molecular dynamics method for simulations of confined liquids. The method combines constant pressure simulations with a computational cell containing solid surfaces and both bulk and confined liquid regions in equilibrium with each other. For both molecular liquids layered density oscillations in the confined films are found for various widths of the confining gap. The solvation force oscillations as a function of the gap width for the straight chain n-hexadecane liquid are more pronounced exhibiting attractive and repulsive regions, while for the branched alkane the solvation forces are mostly repulsive, with the development of shallow local attractive regions for small values of the gap width. Furthermore, the nature of the transitions between well-formed layered configurations is different in the two systems, with the n-hexadecane film exhibiting solid-like characteristics portrayed by step-like variations in the number of confined segments occurring in response to a small decrease in the gap width, starting from well-layered states of the film. On the other hand the behavior of the squalane film is liquid-like, exhibiting a monotonic continuous decrease in the number of confined segments as the gap width is decreased. These characteristics are correlated with structural properties of the confined films which, for n-hexadecane, exhibit enhanced layered ordering and in-plane ordered molecular arrangements, as well as with the relatively high tendency for interlayer molecular interdigitation in the squalane films. Reduced conformational ~trans-guache! transition rates in the confined films, compared to their bulk values, are found, and their oscillatory dependence on the degree of confinement is analyzed, showing smaller transition rates for the well-formed layered states of the films. © 1997 American Institute of Physics. @S0021-9606~97!50610-6#
منابع مشابه
Origins of Solvation Forces in Confined Films
Comparative investigations of equilibrium structures, solvation forces, and conformational dynamics of thin confined films of spherical molecules, straight-chain alkanes (n-hexadecane and n-tetracosane), and a branched alkane (squalane) are performed using a newly developed grand canonical ensemble molecular dynamics method for simulations of confined liquids. The method combines constant press...
متن کاملSolvation Force of Ellipse-Shaped Molecules Moving in One Dimension and Confined between Two Parallel Planar Walls
The model fluids containing hard ellipses (HEs) and Gay-Berne (GB) particles where their center is moving in one dimension and confined between two parallel walls with different interactions are investigated using Monte Carlo simulation, NVT ensemble. The dependency of fluid pressure with respect to the wall distances is studied. The oscillatory behaviors are seen in this quantity against ...
متن کاملSqueeze-out of branched alkanes on graphite.
We study squalane and heptamethylnonane (HMN) confined between a conducting atomic force microscope tip and a graphite surface. Solvation layering occurs for both liquids but marked differences in the squeeze out mechanics are observed for ordered or disordered monolayers. The squalane monolayer at 25 degrees C is an ordered solid, as verified by direct imaging, and the squeeze out can be model...
متن کاملOrdering of liquid squalane near a solid surface
X-ray reflectivity is used to study the interfacial structure of liquid squalane on SiO2/Si(1 0 0) substrates. The data show that there are density oscillations ( layers ) near the interface, with the squalane molecular long axes parallel to the substrate. The results are compared to those from molecular dynamics simulations and recent force measurements. 2005 Elsevier B.V. All rights reserved....
متن کاملSolvation Force in Hard Ellipsoid Molecular Liquids with Rod-Sphere and Rod- Surface Interactions
In previous work, one of us calculated the Solvation force of hard ellipsoid fluid with hard Gaussian overlap potential using hard needle wall interaction and non-linear equation proposed by Grimson- Rickyazen. In present work, using density functional theory and extended restricted orientation model, the solvation force of hard ellipsoid fluid in presence of more realistic rod- sphere and rod-...
متن کامل